對(duì)于鋰離子電池包制造商來(lái)說(shuō),針對(duì)電池供電系統(tǒng)構(gòu)建安全且可靠的產(chǎn)品是至關(guān)重要的。電池包中的電池管理電路可以監(jiān)控鋰離子電池的運(yùn)行狀態(tài),包括了電池阻抗、溫度、單元電壓、充電和放電電流以及充電狀態(tài)等,以為系統(tǒng)提供詳細(xì)的剩余運(yùn)轉(zhuǎn)時(shí)間和電池健康狀況信息,確保系統(tǒng)作出正確的決策。此外,為了改進(jìn)電池的安全性能,即使只有一種故障發(fā)生,例如過(guò)電流、短路、單元和電池包的電壓過(guò)高、溫度過(guò)高等,系統(tǒng)也會(huì)關(guān)閉兩個(gè)和鋰離子電池串聯(lián)的背靠背(back-to-back)保護(hù)MOSFET,將電池單元斷開(kāi)?;谧杩垢櫦夹g(shù)的電池管理單元(BMU)會(huì)在整個(gè)電池使用周期內(nèi)監(jiān)控單元阻抗和電壓失衡,并有可能檢測(cè)電池的微小短路(micro-short),防止電池單元造成火災(zāi)乃至爆炸。
鋰離子電池安全
??? 過(guò)高的工作溫度將加速電池的老化,并可能導(dǎo)致鋰離子電池包的熱失控(thermal run-away)及爆炸。對(duì)于鋰離子電池高度活性化的含能材料來(lái)說(shuō),這一點(diǎn)是備受關(guān)注的。大電流的過(guò)度充電及短路都有可能造成電池溫度的快速上升。鋰離子電池過(guò)度充電期間,活躍得金屬鋰沉積在電池的正極,其材料極大的增加了爆炸的危險(xiǎn)性,因?yàn)殇噷⒂锌赡芘c多種材料起反應(yīng)而爆炸,包括了電解液及陰極材料。例如,鋰/碳插層混合物(intercalated compound)與水發(fā)生反應(yīng),并釋放出氫氣,氫氣有可能被反應(yīng)放熱所引燃。陰極材料,諸如LiCoO2,在溫度超過(guò)175℃的熱失控溫度限(4.3V單元電壓)時(shí),也將開(kāi)始與電解液發(fā)生反應(yīng)。
?? 鋰離子電池使用很薄的微孔膜(micro-porous film)材料,例如聚烯烴,進(jìn)行電池正負(fù)極的電子隔離,因?yàn)榇祟?lèi)材料具有卓越的力學(xué)性能、化學(xué)穩(wěn)定性以及可接受的價(jià)格。聚烯烴的熔點(diǎn)范圍較低,為135℃至 165℃,使得聚烯烴適用于作為熱保險(xiǎn)(fuse)材料。隨著溫度的升高并達(dá)到聚合體的熔點(diǎn),材料的多孔性將失效,其目的是使得鋰離子無(wú)法在電極之間流動(dòng),從而關(guān)斷電池。同時(shí),熱敏陶瓷(PCT)設(shè)備以及安全排出口(safety vent)為鋰離子電池提供了額外的保護(hù)。電池的外殼,一般作為負(fù)極接線(xiàn)端,通常為典型的鍍鎳金屬板。在殼體密封的情況下,金屬微粒將可能污染電池的內(nèi)部。隨著時(shí)間的推移,微粒有可能遷移至隔離器,并使得電池陽(yáng)極與陰極之間的絕緣層老化。而陽(yáng)極與陰極之間的微小短路將允許電子肆意的流動(dòng),并最終使電池失效。絕大多數(shù)情況下,此類(lèi)失效等同于電池?zé)o法供電且功能完全終止。在少數(shù)情況下,電池有可能過(guò)熱、熔斷、著火乃至爆炸。這就是近期所報(bào)道的電池故障的主要根源,并使得眾多的廠商不得不將其產(chǎn)品召回。
電池管理單元(BMU)以及電池保護(hù)
??? 電池材料的不斷開(kāi)發(fā)提升了熱失控的上限溫度。另一方面,雖然電池必須通過(guò)嚴(yán)格的UL安全測(cè)試,例如UL16?2,但提供正確的充電狀態(tài)并很好的應(yīng)對(duì)多種有可能出現(xiàn)的電子原件故障仍然是系統(tǒng)設(shè)計(jì)人員的職責(zé)所在。過(guò)電壓、過(guò)電流、短路、過(guò)熱狀態(tài)以及外部分立元件的故障都有可能引起電池突變的失效。這就意味著需要采取多重的保護(hù)――在同一電池包內(nèi)具有至少兩個(gè)獨(dú)立的保護(hù)電路或機(jī)制。同時(shí),還希望具備用于檢測(cè)電池內(nèi)部微小短路的電子電路以避免電池故障。
??? 圖1展示了電池包內(nèi)電池管理的單元方框圖,其組成包括了電量計(jì)集成電路(IC)、模擬前端電路(AFE)、獨(dú)立的二級(jí)安全保護(hù)電路。
圖1. 電池管理單元
??? 電量計(jì)電路設(shè)計(jì)用于精確的指示可用的鋰離子電池電量。該電路獨(dú)特的算法允許實(shí)時(shí)的追蹤電池包的蓄電量變化、電池阻抗、電壓、電流、溫度以及其它電路信息。電量計(jì)自動(dòng)的計(jì)算充電及放電的速率、自放電以及電池單元老化,在電池使用壽命期限內(nèi)實(shí)現(xiàn)了高精度的電量計(jì)量。例如,一系列專(zhuān)利的阻抗追蹤電量計(jì),包括bq20z70,bq20z80以及bq20z90,均可在電池壽命期限內(nèi)提供高達(dá)1%精度的計(jì)量。單個(gè)熱敏電阻被用于監(jiān)測(cè)鋰離子電池的溫度,以實(shí)現(xiàn)電池單元的過(guò)熱保護(hù),并用于充電及放電限定。例如,電池單元一般不允許在低于0℃或高于45℃的溫度范圍內(nèi)充電,且不允許在電池單元溫度高于65℃時(shí)放電。如檢測(cè)到過(guò)電壓、過(guò)電流或過(guò)熱狀態(tài),電量計(jì)IC將指令控制AFE關(guān)閉充電及放電MOSFET Q1及Q2。當(dāng)檢測(cè)到電池欠壓(under-voltage)狀態(tài)時(shí),則將指令控制AFE關(guān)閉放電MOSFET Q2,且同時(shí)保持充電MOSFET開(kāi)啟,以允許電池充電。